VOLTAGE: 50 TO 1000V CURRENT: 3.0A

FEATURES

- Molded case feature for auto insertion
- Glass passivated chip
- High current capability
- Low leakage current
- Fast switching for high efficiency
- High surge capability
- High temperature soldering guaranteed: $250^{\circ} \mathrm{C} / 10 \mathrm{sec} / 0.375^{\prime \prime}(9.5 \mathrm{~mm})$ lead length at 5 lbs tension

MECHANICAL DATA

- Terminal: Plated axial leads solderable per MIL-STD 202E, method 208C
- Case: Molded with UL-94 Class V-O recognized flame retardant epoxy
- Polarity: Color band denotes cathode
- Mounting position: Any

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

(Single-phase, half-wave, 60 Hz , resistive or inductive load rating at $25^{\circ} \mathrm{C}$, unless otherwise stated, for capacitive load, derate current by 20\%)

RATINGS	SYMBOL	$\begin{array}{\|c\|} \hline F R \\ 301 G \end{array}$	$\begin{array}{\|c} \hline \text { FR } \\ 302 G \end{array}$	$\begin{array}{\|c\|} \hline \text { FR } \\ 303 G \end{array}$	$\begin{array}{\|c} \hline \text { FR } \\ 304 G \end{array}$	$\begin{array}{\|c\|} \hline \text { FR } \\ \text { 305G } \end{array}$	$\begin{array}{\|c\|} \hline \text { FR } \\ 306 G \end{array}$	$\begin{array}{\|c\|} \hline \text { FR } \\ 307 G \end{array}$	UNITS
Maximum Repetitive Peak Reverse Voltage	$\mathrm{V}_{\text {RRM }}$	50	100	200	400	600	800	1000	V
Maximum RMS Voltage	$\mathrm{V}_{\text {RMS }}$	35	70	140	280	420	560	700	V
Maximum DC Blocking Voltage	$V_{\text {DC }}$	50	100	200	400	600	800	1000	V
Maximum Average Forward Rectified Current (9.5 mm lead length, at $\mathrm{T}_{\mathrm{a}}=55^{\circ} \mathrm{C}$)	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	3.0							A
Peak Forward Surge Current (8.3ms single half sine-wave superimposed on rated load)	$\mathrm{I}_{\text {FSM }}$	125							A
Maximum Instantaneous Forward Voltage (at rated forward current)	V_{F}	1.3							V
Maximum DC Reverse Current $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (at rated DC blocking voltage) $\mathrm{T}_{\mathrm{a}}=100^{\circ} \mathrm{C}$	I_{R}	$\begin{aligned} & \hline 5.0 \\ & 100 \end{aligned}$							$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Maximum Reverse Recovery Ti (Note 1)	trr	150				250		O	nS
Typical Junction Capacitance (Note 2)	C_{J}	40							pF
Typical Thermal Resistance (Note 3)	$\mathrm{R}_{\theta}(\mathrm{ja})$	30							${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage and Operation Junction Temperature	$\mathrm{T}_{\mathrm{STG}}, \mathrm{T}_{\mathrm{J}}$	-65 to +150							${ }^{\circ} \mathrm{C}$

Note:

1. Reverse recovery condition $\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{R}}=1.0 \mathrm{~A}, \mathrm{Irr}=0.25 \mathrm{~A}$
2.Measured at 1.0 MHz and applied voltage of $4.0 \mathrm{~V}_{\mathrm{dc}}$
3.Thermal resistance from junction to ambient at $0.375^{\prime \prime}(9.5 \mathrm{~mm})$ lead length, P.C. board mounted
